Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene

Highly porous carbons have been successfully synthesized by chemical activation of polythiophene with KOH. The activation process was performed under relatively mild activation conditions, i. e., a KOH/polymer weight ratio of 2 and reaction temperatures in the 600 – 850 oC range. The porous carbons thus obtained possess very large surface areas, up to 3000 m/g, and pore volumes of up to 1.75 cm...

متن کامل

Preparation and Characterization of Activated Carbon derived from olive stone as adsorbent for Congo Red

Carbon activated powdered was prepared from activated carbon derived from olive stone. Then byusing the surface methodology, many parameters such as pH, furnace temperature (T), acid ratio,time of activation that affect on the qualities prepared activated carbon produced and its efficiencywere investigated. In addition, the adsorption of Congo Red onto the activated olive stone carbonactive was...

متن کامل

Porous Materials from Thermally Activated Kaolinite: Preparation, Characterization and Application

In the present study, porous alumina/silica materials were prepared by selective leaching of silicon/aluminum constituents from thermal-activated kaolinite in inorganic acid or alkali liquor. The correlations between the characteristics of the prepared porous materials and the dissolution properties of activated kaolinite were also investigated. The results show that the specific surface area (...

متن کامل

Storage of hydrogen in nanostructured carbon materials

Recent developments focusing on novel hydrogen storage media have helped to benchmark nanostructured carbon materials as one of the ongoing strategic research areas in science and technology. In particular, certain microporous carbon powders, carbon nanomaterials, and specifically carbon nanotubes stand to deliver unparalleled performance as the next generation of base materials for storing hyd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Hydrogen Energy

سال: 2011

ISSN: 0360-3199

DOI: 10.1016/j.ijhydene.2011.09.032